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We present a propagator-resolved 2D exchange spectroscopy technique for observing fluid motion in a
porous medium. The susceptibility difference between the matrix and the fluid is exploited to produce
an inhomogeneous internal magnetic field, causing the Larmor frequency to change as molecules migrate.
We test our method using a randomly packed monodisperse 100 lm diameter glass bead matrix satu-
rated with distilled water. Building upon previous 2D exchange spectroscopy work we add a displace-
ment dimension which allows us to obtain 2D exchange spectra that are defined by both mixing time
and spatial displacement rather than by mixing time alone. We also simulate our system using a Monte
Carlo process in a random nonpenetrating monodisperse bead pack, finding good agreement with exper-
iment. A simple analytic model is used to interpret the NMR data in terms of a characteristic length scale
over which molecules must diffuse to sample the inhomogeneous field distribution.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

The diffusion of molecules imbibed in a porous medium has rel-
evance to biology, petrophysics, and chemical engineering. In par-
ticular, the measurement of time-dependent diffusion can provide
information about the structure of the system being studied. NMR
presents a number of noninvasive approaches to such measure-
ment. Pulsed Gradient Spin Echo (PGSE) NMR [1] allows one to
measure the diffusion of spins by applying stepped magnetic field
gradient pulses and noting the echo attenuation caused by dephas-
ing. Such PGSE NMR methods allow one to measure specific trans-
lational displacements over a well-defined displacement time. We
describe here a new experiment in which such measured displace-
ments of spin-bearing molecules are correlated with changes in lo-
cal magnetic field.

Before detailing our method we briefly review some prior meth-
odology. Spin-echo measurements of relaxation have proven an
alternative route to studying diffusion. Pore surfaces influence
relaxation so that molecules resident in small pores, with large sur-
face to volume ratios, have shorter relaxation times. Consequently,
the rate of T2 relaxation is related to the pore size distribution of a
porous system [2], and therefore in an exchange experiment, any
changes in T2 will provide evidence for inter-pore migration. A
2D T2 exchange method has been proposed to track the pore to
pore movement of fluid through a porous system [3,4]. These
methods rely on the 2D inverse Laplace transform [5] which results
ll rights reserved.
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in pearling effects [6], which generate distinct off-diagonal peaks.
The growth of these off-diagonal peaks in the 2D relaxation spec-
trum and can be interpreted as arising from diffusion between
pores of different sizes. Finally, susceptibility inhomogeneity be-
tween the matrix and the pore space leads to inhomogeneous local
magnetic fields when the porous medium is placed in the magnet
used for NMR measurements. Diffusion of molecules in these inho-
mogeneous internal fields results in dephasing of the spins and a
consequent spin echo decay. Dephasing due to diffusion in the
internal field (DDIF) can also be used to study the pore geometry
in rocks [7]. By increasing the time water is allowed to diffuse
through a pore space with a highly inhomogeneous field, one can
find where the spin echo DDIF approaches zero to define a charac-
teristic time that can be used as a direct measure of the pore space.
Such pore to pore fluid transfer can also be studied by using 2D ex-
change methods, which measure the NMR magnetization at two
different times, resulting in two different NMR spectra [8].

In a previous paper [9] we demonstrated a 2D exchange tech-
nique to investigate molecular motion through a porous media in
an inhomogeneous magnetic field. We explored the molecular mo-
tion of water molecules through two sizes of monodisperse glass
bead packs. To do this we used a two-dimensional pulse sequence
similar to a NOESY [10] with a frequency encoding and acquisition
time separated by a mixing time, sm which would allow the water
molecules time to diffuse through the pore system. We took a Fou-
rier transform of the raw data to produce a 2D spectrum. An inho-
mogeneous magnetic field exists in this pore system due to the
susceptibility differences between the water and the glass beads
which causes a broadening in the 1D spectrum [11,12]. As water
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molecules diffuse through the inhomogeneous magnetic field, they
cause a broadening in the off-diagonal width of the 2D spectra. As
the mixing time is increased, the mean diffusion distance in-
creases, resulting in an increasing off-diagonal intensity.

A limitation of both the T2 exchange experiment and the inho-
mogeneous local field exchange experiment is that only temporal
insight is obtained. For example, the T2 exchange experiment can-
not distinguish between signals originating from molecules that
have remained within their starting pore and molecules that have
diffused from a starting pore to a similarly sized pore. To differen-
tiate between these signals, Washburn and Callaghan introduced
an additional displacement dimension by inserting a third encod-
ing parameter, the response of the spectrum to a PGSE gradient
pulse pair. On Fourier transformation with respect to this dimen-
sions, a displacement propagator results, giving probabilities of
displacement along the direction of the applied magnetic field gra-
dient pulse [13,14]. By adding the displacement dimension, Wash-
burn and Callaghan were able to select planes of T2 exchange
spectra separated by displacement, and for different values of the
mixing time allowed for exchange.

In this article we report on a similar extension of the inhomoge-
neous local field exchange experiment in which a third displace-
ment dimension is included. In the earlier 2D version of the
experiment, the off-diagonal intensity arises from all molecules
which have changed their local field value, irrespective of the dis-
tance travelled. By including the propagator dimension we are now
able to distinguish molecules which have diffused different dis-
tances along the field gradient axis. Hence, rather than measuring
an off-diagonal intensity which is a function of mixing time alone,
we add a displacement dimension, allowing a spatio-temporal
analysis of the diffusion between sites of differing field. Of course
the connection between space and time, in this context, is provided
by the diffusion rate, and the characteristic length scale over which
local fields change significantly, as measured by the spread of Lar-
mor frequencies in the NMR spectrum. The ability to access the
spatial information therefore provides a more robust check on
any model used to interpret our experimental results. It is this
use of a well-defined spatial dimension which differentiates our
method from earlier local field exchange methods such as DDIF
or the 2D method described in reference [9].

The new data we acquire consist of two-dimensional spectra
where axes are labeled by the frequency spread corresponding to
the inhomogeneous field. We then focus our attention to the off-
diagonal intensity of these spectra at some particular frequency
offset. This is done to establish the degree of exchange that is
occurring during the mixing period. We then measure the intensity
as a function of molecular displacement, Z, and mixing time, sm,
using the label I(Z,sm). We adopt two approaches in the interpreta-
tion of our data. First, we model the internal fields in a random
bead pack and simulate the restricted diffusive motion of mole-
cules within that pack, thus gaining estimates of I(Z,sm). Second,
Fig. 1. Pulsed sequence used for the propaga
we adopt a simple analytic model for the migration of NMR signal
away from the spectral diagonal by assuming an isotropic Gaussian
propagator with effective diffusion coefficient Deff, and a measure
of the degree of randomizing of the NMR frequency within the
inhomogeneous field spectrum which depends on total displace-
ment R as 1� expð�R2=2l2

c Þ, where lc is some characteristic length
scale.

While our new method has strong links with prior work, such as
DDIF and T2-exchange methods, it is distinct in a number of re-
gards. First it is ‘‘many-dimensional”, having both evolution and
acquisition frequency domains, f1 and f2, a mixing time dimension,
and a displacement dimension. Second, the use of pulsed field gra-
dient encoding allows direct determination of molecular displace-
ments, rather than via an indirect deduction based on a known
diffusion time and an assumed effective diffusion coefficient, as
implied in DDIF. Finally, the multitude of dimensions allows for
different modes of analysis, by selecting different ‘‘planes” of
parameters, or, as we shall show, by comparing with model predic-
tions, we produce a two-dimensional surface, rather than a one-
dimensional graph.

2. Method

2.1. Experimental

All experiments were performed at 22 �C on a 400 MHz Bruker
spectrometer using the proton signal from distilled water in a ran-
dom dense pack of monodisperse glass spheres. The glass beads are
comprised of soda lime glass of mean diameter 97.6 lm with a
standard deviation of 3.6 lm (Duke Scientific Products, Fremont,
CA).

2.1.1. Pulse sequence
The pulse sequence used is shown in Fig. 1. To prevent interac-

tion between the applied gradients and the internal magnetic field
gradients of the sample [15], we use bipolar pulsed field gradients
of strength g with a storage time D measured between the begin-
nings of each gradient pair. For each n, we step the applied gradi-
ents p times to a maximum strength of 13.5 G cm�1 and
incrementally increase the frequency encoding time, t1 by a incre-
ment equal to 1/bandwidth, in our case (20 kHz)�1 or 50 ls. Since
we want to keep the storage time D constant for all n, we include a
spin echo sequence before the diffusion measurement to allow us
to increment t1. Note that the spin echo produced from this spin
echo sequence will appear at a time t1 after the 180�. The time be-
tween the first and second 180� is 1.01 ms. Due to the broadened
1D spectrum, half the signal from this echo will have decayed at
a t1 of 192 ls. Thus we will only forfeit a small amount of resolu-
tion in our final 2D spectrum. After the first applied gradient pair,
a 90� pulse stores the magnetization along the z axis to eliminate
any effect from T2 relaxation, however, the protons still undergo
tor-resolved field exchange experiment.
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Fig. 2. (a) The measured 1D 1H NMR spectrum for the water in glass bead pack at 400 MHz. The spectrum has an FWHM of 5.2 kHz. (b) The simulated NMR spectrum for a
random bead pack. Frequency units are dimensionless and the spectrum has an FWHM of 1.1.

Fig. 3. The simulated internal magnetic field for the center y slice of the volume
investigated where all spheres in the pack contribute to the field calculation. The
internal magnetic field is in dimensionless units.
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T1 relaxation. After a mixing time, sm, which is approximately D,
the magnetization is brought back to the transverse plane and
the second pair of gradients are pulsed to complete the diffusion
measurement. We acquire for a time t2 following a time d after
the final 90� pulse. To ensure the resultant signal is only that de-
rived from the initial 90� pulse, we utilize a 16 step phase cycling.

This pulse sequence produces an m � n � p data matrix where
m is the number of acquisition points, n the number of time evolu-
tion steps and p the number of q-gradient steps. For all experi-
ments we acquire for 128 points (acquisition time 6.4 ms),
increment t1 64 times (evolution time 3.3 ms) and step our applied
gradients 33 times for a data matrix of size 128 � 64 � 33 which
we zero fill to 256 � 256 � 64 and apply a 3D fast Fourier trans-
form. All data is processed using Matlab (MathWorks, Natick, MA).

The one-dimensional NMR spectrum for the water/beadpack
sample is shown in Fig. 2a.

2.2. Simulations

We have built upon a computer model created by Hunter et al.
[16] which generates a random bead pack and uses a random walk
model to simulate diffusion throughout its pore space. To create
the bead pack we drop spheres one by one into a cylinder of diam-
eter 10 bead diameters and allow the beads to reach their potential
energy minimum. For our simulation, we use 792 beads with a
height of approximately 10 bead diameters. Our calculated poros-
ity is 39.3%.

The modeling of diffusion is based on a random-walk model
where tracers step a length r per time step t where the step length
is defined by

rðt þ DtÞ ¼ rðtÞ þ
ffiffiffiffiffiffiffiffiffi
2D0

p
DWðtÞ ð1Þ

where D0 is the self diffusion coefficient, and DW(t) is a Gaussian
random variable with variance Dt. During this diffusion process,
the sphere pack is treated as gridded spheres of diameter 10 units.
If a tracer encounters a sphere at the end of any step, that step is
rejected and retried until it ends without encountering a sphere.
We allow the tracers to diffuse for specified times which match
our experimental storage times and obtain final tracer position
data.

To generate the internal field, we treat each sphere as a mag-
netic dipole oriented at the sphere center in the z-direction and
take the magnetic field at each mesh cube as a superposition of
the magnetic field from all spheres in the bead pack.

However, to eliminate the possibility of tracers diffusing outside
of the observation area, we select a cube of size 4.5 bead diameters
per side centered in the middle of the cylinder and break it into a
120 � 120 � 120 mesh of size 0.075 bead diameters, and include in
our processing only those tracers which originate inside this cube.

The resultant internal field is shown in Fig. 3 which shows an xz
slice of the center of our model cube with a much smaller mesh
size of 0.0187 bead diameters to better display the internal mag-
netic field.

For each simulated storage time, we determine the displace-
ment and recalculate the internal magnetic field offset based on
the final positions of the tracers.

Relative to each bead, one can see that the field tends to be
strongest (light) at the z-direction poles, and lowest (dark) at the
equators. While the 1D spectrum shown in Fig. 2b shows a positive
skew, however the average of this spectrum is slightly negative at
�0.0191. This skew is probably due to edge effects caused by our
finite sized bead pack.
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3. Experimental and simulation results

Fig. 4 shows the Z-displacement propagator for a mixing time of
160 ms. This corresponds to a D of 162 ms. The experimentally
measured propagator is shown by the solid line and has a resolu-
tion of 3.5 lm. For molecules diffusing in a random pore glass with
pore separation b, the expected echo attenuation is the diffusive–
diffraction behavior, as given in the pore hopping model [17] by

Eðq;DÞ ¼ jS0ðqÞj2 exp �6Deff D

b2 1� sinðqbÞ
qb

� �� �
ð2Þ

where jS0ðqÞj2 is the pore structure factor and the q vector magni-
tude is cdg. For asymptotic conditions, Deff D� b2, this expression
reduces to expð�q2Deff DÞ for which the asymptotic propagator is gi-
ven by the Gaussian
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Fig. 5. (a) The ratio of effective diffusion to bulk diffusion for a 100 lm beadpack from exp
mm and without t1 stepping. (b) The ratio of effective diffusion to bulk diffusion for the
PðZ;DÞ ¼ ð4pDeff DÞ�1=2 exp � Z2

4Deff D

 !
ð3Þ

where Z represents displacements along the gradient axis. Given
D = 162 ms, and fitting to the low q2 limit of the echo attenuation
E(q) (i.e. from the mean-squared displacement Deff = hZ2i/2D), we
find an effective diffusion of Deff ¼ 0:65D0 where D0 is the diffusion
coefficient of bulk water. The theoretical propagator is shown by
the dashed line and agrees moderately well with experiment. The
slightly different experimental propagator shape probably arises
because the asymptotic conditions for diffusion have not quite been
reached at 160 ms, and therefore the actual propagator is not yet
gaussian. The dotted line is the propagator found by simulation at
a mixing time of 160 ms. Again, to determine an effective diffusion
coefficient, we derive E(q) from the simulated propagator and fit for
q2 in the low q limit. For the simulations, the effective diffusion
coefficient at 162 ms is found to be 0.74D0 where D0 is the bulk dif-
fusion constant.

Fig. 5 shows the approach to asymptotic conditions as the mix-
ing time is increased of Deff for both experiment and simulations.
For both the experiments and simulation, asymptotic conditions
have not been fully reached at 640 ms, however the limit is suffi-
ciently close that a reasonable estimate can be made for the pur-
pose of calculating porosity. In a bead pack the expected
asymptotic diffusion coefficient is

ffiffiffiffi
/
p

D0 where / is the porosity
[18]. For the experiments, where we find / = 0.436, this agrees well
with this expected limit. The simulated bead pack has a porosity of
0.393, suggesting an asymptotic Deff of 0.63D0. This estimate is con-
sistent with Fig. 5, and suggests that asymptotic conditions have
not yet been reached at 162 ms in the case of the simulations. It
is possible that choice of a sampling cube of side length 4.5 bead
diameters may have been insufficient to obtain a representative
elementary volume. In fact, we find the average of the Bz field in
Fig. 2b to be �0.0191 suggesting we do not have full anisotropy
in the cube. We are constrained by computer memory with regards
to the size of this cube, however the simulations presented do pro-
vide a useful comparison.

We can select 2D spectra along the propagator dimension
which correspond to spectra containing the NMR signals from mol-
ecules which have diffused a specific range of Z-displacements. The
top row of Fig. 6 shows the experimental spectra obtained at
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simulation. Note error bars are inside the markers.
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sm = 160 ms for Z-displacements of 0 lm, 25 lm, and 45 lm which
correspond to the markers N, j, and � on the experimental prop-
agator in Fig. 4.

Since a molecule diffusing for a greater distance will encounter
a greater range of internal magnetic field inhomogeneities, DB0ðrÞ,
we expect the off-diagonal of the spectrum to grow in intensity
with increasing displacement. In the top row of Fig. 6, we see that
for a Z-displacement of 0 lm, there is a narrow off-diagonal. Of
course, zero Z displacement does not mean that a spin-bearing
molecule has not changed its local field during sm. The possibility
remains that that some molecules will have diffused to a different
field in the transverse (X,Y) displacement plane during D, but re-
mained at or returned to their initial Z-position at the end of the
diffusion measurement. This will result in some broadening along
the off-diagonal even at 0 lm Z-displacement. Increasing sm (and
hence D) makes such broadening even more pronounced as X
and Y displacements grow.

To quantify the off-diagonal intensity for each sm and Z, we
average together two points on either side of the maximum of
the off-diagonal slice. These two points are chosen to be the equiv-
alent of a fraction of the full-width-half-maximum (FWHM) of the
1D inhomogeneous spectrum. In this paper, we will look at two dif-
ferent widths, 0.8 FWHM and 1.0 FWHM, the equivalent of 4.3 kHz
and 5.2 kHz. This choice is consistent with the compromise be-
tween the signal to noise ratio and the sensitivity to exchange as
found in reference [9]. The average intensities at these offsets are
plotted in Fig. 7a and b as a function of both sm and Z, referred
to as I(Z,sm).

Mean normalized intensities increase as both sm and Z increase.
Off-diagonal line broadening occurs because water molecules,
whose spectra were acquired during s1 evolution encoding (a total
period of up to 3.3 ms) are diffusing through inhomogeneous fields
to a new local field value at the time of acquisition (which occurs
over 6.4 ms). For the purpose of the present analysis we ignore
any motional averaging spectral effects which may result from
the finite evolution and acquisition times, since these are generally
lower than the sm values used in this work. Of course, we expect an
increase of off-diagonal intensity with increasing Z since the in-
crease in positional displacement increases the possibility of a
water molecule having encountered a different local field. For
increasing sm, both Z and X, Y displacements contribute, further
increasing the likelihood of an altered local field, and thus increas-
ing off-diagonal intensity, I(Z,sm).

The simulated propagator-resolved 2D spectra are calculated by
including only those particles which have diffused a designated Z-
displacement within the 7.5 lm mesh size of our observation cube.
The bottom row of Fig. 6 shows the calculated simulated spectra
for a sm of 160 ms, and Z of 0 lm, 25 lm, and 45 lm. Also shown,
in Fig. 7c and d, are the off-diagonal I(Z,sm) data obtained from the
simulation at 0.8 FWHM offset and 1.0 FWHM offset. The addition
of displacement information allows us to develop a theory incorpo-
rating both mixing time and displacement, rather than extracting
exchange times by simple single or double exponential fitting, as
in the previous method.

4. Theory

We assume that the mean intensity, I(Z,sm), of the off diagonal
grows as molecules diffuse to the new local fields. We define, for
convenience, a soft well given by ð1� expð�R2=2l2

c ÞÞ, where lc is a
characteristic length. This function represents the conditional
probability of a molecule changing its local field so as to contribute
to the off-diagonal intensity. It is zero for R = 0 and 1 as R ?1 as
required. In the Z-resolved experiment, R2 is the total distance a
molecule has diffused such that it ends on a plane of fixed displace-
ment, Z, along the gradient direction, Z. In other words, R2 = Z2 + r2

where r is the distance traveled transverse to the magnetic field
gradient. Given an a priori knowledge of Z at any time sm, I(Z,sm)
is given by

IðZ; smÞ /
Z 1

0
2prdrð4pDeff smÞ�1

� exp � r2

4Deff sm

� �
1� exp � Z2 þ r2

2l2
c

 ! !

¼ const� 1� 2l2
c

2l2
c þ 4Deff sm

exp � Z2

2l2c

 ! !
ð4Þ
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Weighting I(Z,sm) by the propagator P(Z,sm) and integrating over Z,
we obtain the expected result for the non-spatially resolved
experiment,

IðsmÞ ¼ const� 1� 2l2
c

2l2
c þ 4Deff sm

" #3=2
0
@

1
A ð5Þ

Interestingly, this function differs considerably from the naı̈ve
exponential rise assumed in our earlier work and more closely rep-
resents the experimental data, as shown in Fig. 8a, where a fit to lc
yields 20 lm for both FWHMs. We repeat this fit for the simulated
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Fig. 8. (a) Calculated off-diagonal intensities from experiment using Eq. (5) with a charac
lengths are 23 and 25 lm for 0.8 FWHM and 1.0 FWHM, respectively.
data as shown in Fig. 8b and obtain an lc of 23–25 lm for 0.8 FWHM
and 1.0 FWHM, respectively. This characteristic length will give us
an idea of distance a molecule needs to travel in order to sample
a significant range of local fields.

We should observe that the soft well model which led to Eq. (5)
is simplistic and does not accurately represent the complexity of
the local field distribution. For example, we can see from Fig. 3 that
we have a large change in field in the pore throats, which corre-
sponds to a large local magnetic field gradient. A water molecule
does not have to diffuse a large distance to experience a large
change in magnetic field and thus a corresponding increase in
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off-diagonal intensity. This means that the ensemble of molecules
will exhibit multiple length scales for field exchange, depending on
starting position. Hence it is not surprising that different pulse se-
quences may return different length scales. However we do find
internal consistency within the pulse sequence used here, when
we compare fits for propagator-summed and propagator-resolved
experiments.

Using the effective diffusion coefficient measured for each sm,
and our Z-displacements which range from approximately 0 to
50 lm, we plot I(Z,sm) as given by Eq. (4) in Fig. 9. The best repre-
sentation of our experimental and simulated 2D surfaces shown in
Fig. 7 is found by choosing lc in the range 20–30 lm. An lc value of
around 20 lm is comparable with a typical pore dimension in a
100 lm diameter bead pack. We note that Stapf [19] found corre-
lation lengths of 0.35–0.4 bead diameters for simulated diffusion in
a monodisperse bead pack. Audoly et al. [20] suggest that it is the
pore dimension which provides the relevant length scale for inter-
nal field variations. Finally, we note that the correspondence be-
tween lc values obtained for both the experiment and the
simulation found in our study is encouraging, and provides some
support for the simple physical concepts used in the analysis of
our results.

5. Conclusions

In this paper, we present results of a propagator-resolved field
exchange experiment. By adding a displacement dimension to
the previous frequency exchange experiment, we are able to sepa-
rate 2D spectra by both spatial displacement and mixing time
rather than just by mixing time alone. We find off-diagonal inten-
sities increase with increasing Z and sm which is to be expected.
The results of a simulation also produce similar results. A simple
theory based on a characteristic length over which significant
changes in local field occur, gives good agreement with both exper-
iment and simulations. The new insight here concerns the use of a
spatio-temporal approach which has the advantage of yielding a
characteristic length from an exchange experiment in a more nat-
ural manner.
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